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Abstract

Large language models are increasingly de-
ployed in multi-step workflows. We intro-
duce Prompt Choreography, a framework
that enables efficient execution of LLM
workflows by maintaining a dynamic, global
KV cache. Each LLM call can attend to
an arbitrary, reordered subset of previously
encoded messages. Parallel calls are sup-
ported. While caching messages’ encodings
sometimes gives different results from re-
encoding them in a new context, we show
in diverse settings that fine-tuning the LLM
to work with the cache can help it mimic
the original results. Prompt Choreography
significantly reduces latency (2.0–6.2x faster
time-to-first-token) and achieves substantial
end-to-end speedups (>2.2x) in workflows
dominated by redundant computation.

1 Introduction

Large language models (LLMs) are increasingly
deployed beyond simple prompt-response interac-
tions in multi-step workflows that compose many
LLM calls across interconnected agents. These
workflows have driven measurable progress across
diverse domains (Guo et al., 2024).

We introduce Prompt Choreography, a frame-
work for Transformer LLMs where every LLM
call is generated with attention over an arbitrary
reordered subset of previously encoded messages.
This mechanism gives worfklow developers free-
dom to break from traditional prompted autoregres-
sive decoding, in which each decoded token attends
to all previous tokens. By selectively determining
which messages should be visible to each agent,
and in what positions, developers can strategically
reuse cached Transformer key-value (KV) encod-
ings to reduce redundant computation.

The traditional approach requires each call to
the LLM to encode the entire prompt from scratch.
Yet as agents work on a problem, it is common to

Figure 1: Prompt Choreography manages a global KV
cache of messages, which is shared and modified by all
participating agents. When assembling a prompt, the
start position of each selected message may be specified
by the user; this allows reordering, gaps, and overlaps
(not shown here).

reuse input and output messages across multiple
calls. After all, each agent usually conditions on
most of its own previous output and on fixed sys-
tem instructions, and multiple agents usually share
substantial context, such as background documents
and previous inter-agent communications. While
prefix caching strategies (Zheng et al., 2024; Ye
et al., 2024) will reuse some message encodings for
some single-agent workflows, this simple optimiza-
tion must be generalized for multi-agent workflows
to reap similar benefits.

Previous methods, particularly Prompt Cache
(Gim et al., 2024), partially address this by pre-
computing a cache of messages that can be selec-
tively used at run-time, such as contextual docu-
ments. However, these approaches are generally
static; messages that are dynamically generated
at run-time cannot be effectively reused. Prompt
Choreography overcomes these limitations by in-
troducing a global KV cache that can be arbitrarily
updated and accessed by all agents at run-time.

Drawing an analogy to computing architectures,
traditional LLM workflows operate in a distributed
memory model, where individual agents have pri-



vate context windows that require expensive copy-
ing or re-computation to share information. Prompt
Choreography instead opts for a shared memory
model, where agents access virtual views of a
global memory, allowing computational states to
be efficiently shared while maintaining isolation
when needed.

In §2.1, we develop the core ideas behind Prompt
Choreography and describe how it may be imple-
mented and used in practice, which forms the ba-
sis of our reference Python implementation.1 Our
approach uses several novel techniques to enable
fine-grained KV cache management while main-
taining ease of use. We combine a dynamic atten-
tion masking strategy (controlling which previous
messages each agent sees) with efficient position
updates (controlling where those messages appear
in the context) to support virtualized, parallel gen-
eration. This allows messages to be decoded fully
in parallel over a shared KV cache while roughly
maintaining appropriate logical isolation of agents.
Together, these methods significantly reduce re-
dundant computation while facilitating efficient,
parallel generation.

Using Prompt Choreography does require care.
It sometimes results in different message encod-
ings than in a standard workflow (for good or for
ill). For example, it is now possible for message
3 to attend to both messages 1 and 2, each of
which is encoded without attention to the other.
In Section §3, we discuss this kind of information
blockage, which makes messages more indepen-
dent, as well as information leakage, where a
choreography—in the name of efficiency—allows
an agent indirect access to another agent’s private
context by reusing that agent’s own encoding of
its output message. Through targeted experiments,
we characterize the potential adverse downstream
impact of choreography. Despite this, we show that
lightweight parameter-efficient fine-tuning effec-
tively and efficiently mitigates these issues.

In §4, we evaluate three representative
workflows on the standard MATH benchmark
(Hendrycks et al., 2021). While choreographed
workflows may underperform with an LLM that
was not trained for such usage, fine-tuning on a
few hundred examples quickly regains, and some-
times exceeds, baseline performance. The fine-
tuning work is then amortized by a nice run-time
speedup—the resulting workflows achieve between

1https://github.com/tjbai/choreo

2.0–6.2x faster time-to-first token and consistent
end-to-end speedups. Through further scaling in
prefill-bound workflows, we show that Prompt
Choreography can obtain up to a 2.2x end-to-end
speedup.

2 Prompt Choreography

2.1 Core Idea

We extend the industry-standard “Chat” API for
accessing LLMs (OpenAI, 2024). The Chat API is
invoked with a sequence of messages—text strings
annotated with agent roles. Conditioned on a con-
catenation of these messages, the LLM generates
and returns a new message. All messages are tok-
enized internally.

A message typically corresponds to a turn in a
dialogue, an example input or output, a document
to read, or an instruction. Messages are natural
units for caching because their internal meaning
remains relatively stable even when the external
context changes. This stability means that the en-
codings computed by one agent can often be effec-
tively reused by another agent, eliminating redun-
dant work in workflows that exhibit large amounts
of message reuse.

Prompt Choreography maintains a global cache
of messages that are shared by all agents through-
out a workflow’s execution. Each message com-
prises not only a span of tokens, but also their cor-
responding Transformer KV encodings. LLM calls
add new input or output messages to the cache,
conditioning their encodings on any subset of the
previously cached messages. A prompt choreogra-
phy is an arbitrary program that specifies how each
call should select and arrange this subset.

Implementing this approach requires addressing
three key challenges:

First, retrieving cached values must be faster
than simply recomputing them (which is already ef-
ficient with GPU parallelism). We accomplish this
through memory locality, keeping the cache on the
same device as the LLM and using a dynamic at-
tention mask computed on-the-fly to control which
cached encodings each new message accesses.

Second, although attention is fundamentally un-
ordered, LLMs incorporate positional information
into the context, so we must control where to
place the selected messages. Our position updating
technique exploits relative positional embedding
schemes, such as RoPE (Su et al., 2023), to arbitrar-
ily reposition messages without full recomputation.

https://github.com/tjbai/choreo


Figure 2: Workflows for the experiments of §4. Full pseudocode using our API appears in Figure 6 in the Appendix.
Each box is a message, with arrows to it from its parents. Pink boxes are prefilled. Each non-pink box has an
additional parent (not shown): a system prompt corresponding to its color. For instance, each blue “Voter” in middle
is generated with attention to instructions on how to select the best candidate.

Third, to maintain the excellent parallel genera-
tion capability of LLMs, we combine the prior tech-
niques with a special interleaved token layout and
attention masking strategy. This allows multiple
messages to be decoded simultaneously, each at-
tending to a uniquely choreographed prompt, while
sharing the same KV cache.

2.2 Simplifying Assumptions

Our implementation makes the following practical
assumptions:

1. The global KV cache fits entirely in GPU
memory, allowing cached encodings to be eas-
ily attended to during inference.2

2. LLM calls are generated programmatically
and fairly rapidly. There are no pauses in the
choreography—e.g., to wait for a human di-
alogue participant or a slow software tool to
provide the next message. Thus, executing
the choreography does not selfishly lock GPU
memory that may be needed by other work-
flows running on the same LLM server.3

3. The encoding of a token does not reflect its ab-
solute position in the prompt (Vaswani et al.,
2017), but only its position relative to other to-
kens (Press et al., 2022; Su et al., 2023). This
lets us reposition past messages relative to
the start of a new message before sequentially
generating and encoding the new message’s
tokens. Our implementation assumes the cur-
rently popular RoPE scheme for relative posi-
tion embeddings (Su et al., 2023), since it is
used by the LLM we experiment with.

2When this assumption does not hold, one could temporar-
ily swap messages out to CPU, reduce the memory footprint
through cache compression, or drop less important tokens via
cache eviction. See (Li et al., 2024).

3Again, this could be mitigated by swapping the cache out
to CPU memory when the choreography is idle.

2.3 A Prompt Choreography API
The standard Chat API provides a single function,
generate(inputs) → output, which autoregres-
sively generates an output message conditioned on
a ordered list of input messages. Internally, this
operation can be decomposed into two phases: a
parallel prefill phase that computes encodings for
all input messages at once, followed by a sequen-
tial decode phase that produces the output message
token-by-token.

Our API explicitly separates these phases into
prefill and decode functions. Each function
computes encodings that are added to the global
KV cache and returns a unique message identifier
for future reference.

1. prefill(tokens: List[token],

parents: List[id],

offsets: List[Optional[int]],

new_offset: Optional[int]) → id

Encodes the given tokens in parallel, allow-
ing each token to attend to the preceding given
tokens and also to all tokens in the existing
messages parents. Returns an identifier for
the resulting prefilled message. For purposes
of computing relative-position attention, the
parents are repositioned to start at the re-
spective offsets,4 and the new message is
positioned at new_offset. Any omitted off-
set defaults to the position immediately after
the end of the preceding parent message.

2. decode(header: List[token],

parents: List[id],

offsets: List[Optional[int]],

new_offset: Optional[int]) → id

Generates and encodes tokens sequentially,
conditioning on previous tokens and messages

4Repositioning might not actually be essential unless the
past messages need to be reordered. The LLM might be robust
to gaps and overlaps among messages in the prompt, either
off-the-shelf (Gim et al., 2024) or after our fine-tuning (§3.2).



Figure 3: Attention masks used in Prompt Choreogra-
phy. Each token of a new message corresponds to a row,
whose blue entries indicate the parent message tokens
(green) and new message tokens (yellow) that this token
can attend to. Top (prefill) encodes 2 input messages,
each consisting of 3 tokens. All 6 tokens are encoded in
parallel using this mask. Bottom (decode) encodes the
second tokens of 3 output messages. Only 3 tokens are
encoded in parallel, since under Transformer decoding,
they could not be predicted until the first tokens of their
respective messages were fully encoded.

with relative-position attention as before. Re-
turns an identifier for the newly decoded mes-
sage. The new message is constrained to start
with header—for example, Assistant: for
a role-based output or { for a JSON output.

The header in decode must be non-empty, since the
first unconstrained token will be generated from the
top-layer encoding of the last header token. (The
collection of repositioned parents may not have any
obvious “last token” to use for this purpose.)

2.4 Implementation: Managing the KV Cache

Suppose the given Transformer language model
(Vaswani et al., 2017) has L layers, each employing
h attention heads that consume separate keys and
values in Rd. Then all the keys and values for a
single token can be gathered into tensors K,V ∈
RL×h×d. Caching these tensors makes it fast to
attend to that token in the future.

The global KV cache stores K and V for all
previously prefilled or decoded tokens. These
reside contiguously in GPU memory. We main-
tain a count of currently cached tokens, and new
messages are appended sequentially to the end of
the currently occupied portion of the cache. This

append-only strategy is simple and fast.5

When prefill or decode appends a new mes-
sage with identifier m at new_offset i, it rotates
each new token’s key vectors under the RoPE
scheme to “place” this token at logical position
i within the prompt. We store the small integer pair
(m, i) alongside the token’s key and value vectors.
If a future API call needs to reposition this mes-
sage, we modify i and the rotated key vectors—non-
destructively during model fine-tuning (to support
backpropagation through the computation graph),
but destructively during inference.

Dynamic Masking To control which cached en-
codings are attended to, we implement dynamic
attention masking. Conceptually, when executing
an LLM call with specific parent messages, we
want to create a selective view of the global KV
cache that includes only the relevant positions. We
accomplish this by constructing an attention mask
where each position is visible (unmasked) iff it be-
longs to either (1) the new message being created
or (2) any of the parent messages.

This mask can be efficiently computed on-the-
fly using the stored m values. We can equivalently
define the mask using FlexAttention (Dong et al.,
2024), which avoids materializing the entire mask
and takes advantage of attention sparsity, allowing
it to be competitive with efficient implementations
such as FlashAttention (Dao et al., 2022). Thus,
this operation has negligible overhead compared to
standard attention.

Position Updates To reposition a token from i
to j under the RoPE scheme, we can rotate its key
vector through an angle proportional to (j − i).

For efficiency, we precompute the rotation matri-
ces for all possible position differences within our
context window and store them as a lookup table.
Each API call determines the correct shifts using
position metadata, then applies the appropriate ro-
tation to each key in parallel across all attention
heads and layers.

Parallel API Calls For additional speed, we
support adding multiple messages to the cache in
parallel, as long as they do not attend to one another.
While all the new tokens are appended to the same
physical KV cache, each token’s stored (m, i) pair
keeps track of its logical message and position.

When prefilling multiple messages in parallel,
we keep each message physically contiguous be-

5See footnote 2 for potential enhancements.



cause the message lengths are known in advance.
But when decoding multiple messages in parallel,
we alternate their tokens. Consider decoding “I
have a dog” and “She loves her cat” in parallel.
These tokens appear in physical memory as: ”I She
have loves a her dog cat.” In each decoding step,
we can generate a pair of tokens in parallel, so “dog
cat” are predicted from the top-level encodings of
from “a her” (respectively).

This slightly complicates the computation of at-
tention masks. For example, “a” can attend to the
blue message’s parents and to “I have a” (at the
next lower Transformer layer), but cannot attend to
any tokens of the red message. This functions as
a form of virtualization—each agent may choreo-
graph prompts independently without concern for
others, all while sharing the same global KV cache.
Dynamic attention masks for parallel prefilling and
decoding are contrasted in Figure 3.

2.5 Simple Examples

Basic scenarios like prefix caching, where subse-
quent calls reuse an initial conversational history,
are naturally expressed by passing the id’s of pre-
ceding messages in the parents list:
1 prefix = []
2

3 prefix.append(prefill(
4 tokens='User: What is the capital of France?',
5 parents=[]
6 ))
7

8 prefix.append(decode(
9 header='Assistant:',

10 parents=prefix
11 ))
12

13 q1 = prefill(
14 header='User: How about Germany?',
15 parents=prefix
16 )
17

18 q2 = prefill(
19 header='User: How about China?',
20 parents=prefix
21 )

While dedicated systems can efficiently han-
dle automatic prefix caching (Zheng et al., 2024;
Ye et al., 2024), Prompt Choreography is more
general. Patterns resembling Prompt Cache (Gim
et al., 2024) and Block-Attention (Sun et al., 2024),
where encodings for a collection of static docu-
ments or prompts are precomputed, are also sup-
ported. Block-Attention integrates an extra position
update step so that all retrieved messages have se-
quential positions, which is the default provided by
our API when the offsets are omitted.

1 question = prefill(
2 tokens='User: What is the capital of France?'
3 parents=[]
4 )
5

6 docs = []
7 for doc in knowledge_base:
8 docs.append(prefill(
9 tokens=doc,

10 parents=[]
11 ))
12

13 resp = decode(
14 header='Assistant:',
15 parents=[*docs, question]
16 )

Rather than prefill and decode each of these mes-
sages, the API can be extended to express paral-
lelism by overriding the functions to receive lists of
choreography instructions and return lists of corre-
sponding identifiers. We illustrate this, along with
more complex caching patterns that can arise with
these building blocks, in Figure 6.

3 Working with Modified Attention

3.1 A Baseline Approach
To contrast Prompt Choreography with the tradi-
tional Chat API (see §2.3), imagine a naive im-
plementation of our API that mimics the Chat
API, except for being invoked via two methods
(prefill, decode) instead of one (generate).

The naive implementation does not cache any
neural encodings. Each identifier now refers to just
the text of a message, not its contextual encoding:

• prefill does not call the LLM. It ignores the
parents argument. It simply stores tokens
and returns a new id that can be used in future
to refer to this new text input message.

• decode concatenates the parents (i.e., the
text messages referred to by those ids) into
an LLM prompt. It uses the LLM to generate
a new output message starting with header,
again returning a new id for the message text.

Importantly, each naive decode encodes its prompt
from scratch, so each message in its parents will
attend (only) to all previous messages in parents.6

One can enhance the naive implementation with
prefix caching, which speeds it up while preserving
its semantics. We call this the baseline method.

Prompt Choreography differs because when
prefill or decode creates a new input or output
message, respectively, it also computes and stores a

6Both naive methods ignore offsets and new_offset.



contextual encoding of that message. These cached
contextual encodings are reused whenever a mes-
sage is reused—even if the message appears in a
new context! This is faster but gets different results
than the baseline method. It can lead to informa-
tion blockage (seeing too little) and information
leakage (seeing too much), as explained below.

Remark: Dohan et al. (2022) characterize a base-
line workflow as a graphical model, where each
random variable is a text string and depends on
its parent variables. Input and output messages
correspond to observed and unobserved variables.
Prompt Choreography is the same, except that each
random variable is now an encoded text string. This
makes it faster to sample a variable given its par-
ents, but changes the graphical model’s semantics.

3.2 Distillation (via Fine-Tuning)
When information blockage or information leakage
harms performance, we may attempt to recover
baseline-level accuracy—without dropping the
speedup—through lightweight parameter-efficient
fine-tuning (PEFT) of the choreographed workflow.

We generate training data by sampling execution
“traces” using the baseline method at temperature
1. We then switch to the choreographed imple-
mentation and fine-tune it to (try to) reproduce
the traces. That is, we evaluate the total log-loss
of the decode calls when they are forced to pro-
duce the output messages from the baseline traces,
and we adjust the parameters along the gradient of
this log-loss. The gradient is computed by back-
propagating through all prefill and decode steps
in the choreographed workflow.

In the following sections, we conduct experi-
ments with Llama 3.1 8B (Llama Team, 2024),
decoding at temperature 0.7. For PEFT, we train
LoRA adapters (Hu et al., 2021) with a fixed hy-
perparameter setting.7 PEFT modifies < 1% of
the model parameters while requiring only a few
hundred training traces.

3.3 Information Blockage
Information blockage arises when a step of Prompt
Choreography uses parents that were prefilled or
decoded independently (e.g., in parallel for effi-
ciency). In this case, the messages that appear later
in parents were encoded without attention to the
ones that appear earlier—in contrast to the baseline

7rank = 64, α = 32, and dropout = 0.05. This hyperpa-
rameter setting was chosen through limited experiments in the
Tree of Thought setting, detailed in §4.

method. This independence may be beneficial, for
example to eliminate unwanted ordering effects.
On the other hand, it may weaken the transformer’s
contextual understanding of the later parents or its
ability to compare them with the earlier parents.

To quantify the impact of blockage, we examine
two settings: multi-question QA (MultiQA) and
a branch-solve-merge (BSM) workflow for con-
strained story generation (Saha et al., 2024).

MultiQA We design a contrived task that
presents an LLM with two independently
prefilled questions from TriviaQA (Joshi et al.,
2017) and decodes a single answer message.
The system prompt says “Answer all questions.”
We compare three approaches (Figure 4): the
baseline workflow allows question #2 to attend to
question #1, the choreographed serial workflow
drops this cross-attention but still offsets question
#2 after question #1, and the choreographed
parallel workflow completely eliminates question
order by placing both questions at the same
offset so that they overlap. The answer is placed
immediately after the rightmost question token
(via new_offset in decode).

As the LLM was never trained on choreographed
positions, it fails catastrophically (Table 1). Cor-
rectness on both questions drops from 56.4% →
0.4%. Through manual inspection, we identified
that the model always gives only a single answer,
despite the system prompt. As Table 1 shows, in the
serial case it prefers to answer the second question
(61.0% correct) while almost completely ignoring
the first (2.0% correct). In the parallel case, neither
question is “first” or “second” and it may answer
either one.

We then apply our fine-tuning recipe over 200
examples for 2 epochs to choreographed parallel
and evaluate on 500 held-out question pairs. Fine-
tuning demonstrates strong improvement over the
untrained choreographed implementation, recov-
ering most of the baseline performance in each
column. Potentially the gap could be closed further
with more examples or more epochs.

Branch-Solve-Merge To assess blockage in a
more realistic setting, we implement a BSM work-
flow for the CommonGen task (Lin et al., 2020),
which requires generating a coherent story incorpo-
rating a set of 30 concepts.8 The workflow involves:

8We use training, development, and evaluation splits of
size 100, 50, and 50, respectively.



Implementation Q1 (%) Q2 (%) Both (%)

Baseline 71.8 74.8 56.4
Choreo. Serial 2.0 61.0 0.4
Choreo. Parallel 32.8 26.2 0.4
Choreo. Parallel + FT 68.1 71.9 49.3

Table 1: Percentage of correct answers on the MultiQA
task across different implementation. FT denotes distil-
lation via fine-tuning. Bold denotes best performance
or not significantly worse (p > 0.05, McNemar’s Test).

Figure 4: Attention topologies analyzed in MultiQA.
Boxes represent messages, solid arrows represent atten-
tion dependencies, and horizontal displacement repre-
sents relative position, starting from position 0 on the
left and increasing rightwards. Top depicts baseline,
middle depicts choreographed serial, and bottom de-
picts choreographed parallel.

(1) a branch step that divides concepts into two
groups, (2) parallel solve steps that generate a sub-
story for each group, and (3) a final merge step
that combines the two sub-stories into a final narra-
tive. The two sub-stories are analogous to the two
questions in MultiQA, so we compare the same
workflows for prefilling them and using them as
parents.

Both choreographed workflows perform substan-
tially worse than the baseline when using the un-
tuned LLM (Table 2), just as in MultiQA. In con-
trast to MultiQA, positional bias now tends to favor
the story appearing as the earlier parent (in the
sense of using more of its concepts), in both base-
line and choreographed serial workflows.

Happily, fine-tuning the choreographed parallel
workflow, on 100 stories for 4 epochs, makes it
statistically indistinguishable from the baseline.9

9It even does slightly better on our particular test set of size
50, but the confidence interval on the population difference is

Head-to-head comparisons judged by an LLM indi-
cate that fine-tuning restores narrative quality, not
merely coverage. Meanwhile, the baseline’s un-
wanted positional bias is—of course—eliminated
by our use of a parallel workflow.

3.4 Information Leakage

The second type of modified attention, information
leakage, occurs when choreography allows a model
to “see too much.” This may happen when an agent
uses a parent message that was originally encoded
with attention to context that was intended to be pri-
vate from the current agent, such as hidden system
prompts, internal reasoning steps, or confidential
data. Leakage may be particularly concerning in
privacy-sensitive applications or simulations requir-
ing strict information asymmetry, such as in role-
playing simulations (Park et al., 2023) or games
(Hua et al., 2024). In contrast, information may
be benign (or even helpful) in purely collaborative
settings. While fine-tuning can teach the LLM to
behave during choreography like the baseline work-
flow, this does not provide any strict guarantees;
careful choreography design is left to the developer.

Prisoner’s Dilemma To evaluate the effects of
unwanted information leakage, we use a workflow
based on the classic Prisoner’s Dilemma. Two
game-playing agents, Alice and Bob, each privately
develop a strategy through a chain of thought. They
then engage in two rounds of open conversation
before each decides whether to “cooperate” or “de-
fect.” The game’s payoff matrix (Table 3) incen-
tivizes defection, but the conversation phase allows
the agents to negotiate toward mutual cooperation
(possibly deceptively). Llama 3.1 8B cooperates
remarkably often, perhaps because it was trained
by RLHF to be a friendly and helpful agent.

Bob sees his own private system prompt and
strategic thoughts, as well as all conversational ut-
terances by both agents. The problem arises when
Bob sees cached versions of Alice’s utterances,
which were encoded by Alice as she generated
them, with attention to her own private system
prompt and strategic thoughts. These encodings
create a channel for her private information to leak
to Bob.11

somewhat wide. A larger test set would be desirable.
10 Specifically, the implementation mcnemarExactDP pro-

vided by the exact2x2 R package.
11This can be avoided if Bob only sees versions of Alice’s

utterances that have been freshly re-encoded without this at-
tention, as in the standard Chat API. Our API can recreate this



Concept Coverage (%) Winrate vs. Baseline (%)

Implementation Average (Diff. CI) Story 1 Story 2 Baseline Wins (CI) Choreo. Wins (CI)

Baseline 81.0 87.6 82.4 — —
Choreo. Serial 65.1 (−20.2,−11.6) 80.5 53.0 58.0 (44.0, 77.0) 8.0 (2.0, 16.0)

Choreo. Parallel 63.0 (−22.1,−14.0) 67.4 65.0 56.0 (42.0, 70.0) 6.0 (0.0, 14.0)

Choreo. Parallel + FT 81.6 (−2.7,+3.8) 85.6 85.3 30.0 (18.0, 44.0) 30.0 (18.0, 42.0)

Table 2: Left: Concept coverage metrics showing the percentage of concepts successfully incorporated into the final
story. Group 1 and Group 2 denote the percent of concepts incorporated from each of two sub-stories generated in
the solve step. We report 95% confidence intervals on the difference from baseline, obtained via the paired bootstrap.
Underlining denotes a statistically significant differences in Group 1 and Group 2 coverage (p < 0.05, obtained via
bootstrapping). Bolding denotes best performance or not significantly worse (p > 0.05, obtained via bootstrapping)
Right: Head-to-head win-rates as judged by GPT-4o (remaining percentage represents ties), with 95% CIs obtained
via bootstrapping.

C D

C (3, 3) (0, 5)

D (5, 0) (1, 1)

Alice’s Strategy Bob’s Cooperation Rate (%)

Baseline Choreo. (Diff. CI) Choreo. + FT (Diff. CI)

No Explicit Strategy 78.3 63.9 (−20.7,−9.6) 76.8 (−6.1,+4.4)

Always Cooperate 87.7 78.2 (−14.2,−4.2) 83.9 (−6.0,+2.8)

Always Defect 72.8 46.7 (−30.9,−18.9) 68.3 (−8.1,+3.7)

Table 3: Left: Prisoner’s Dilemma payoff matrix showing (Alice utility,Bob utility), depending on if each player
cooperates (C) or defects (D). Right: Bob’s cooperation rates with across different strategies and implementations.
We report 95% CIs on the difference in cooperate, with respect to the baseline, obtained via McNemar’s Exact
Test.10

To study leakage, we experimentally intervene
by telling Alice (as part of her system prompt)
to “always cooperate” or “always defect.” Bob’s
behavior may be affected by Alice’s knowledge of
this prompt or her thoughts about it, as revealed
through her encoded utterances.

When comparing to baseline attention, we im-
prove statistical power by constructing paired ex-
amples. To construct a pair, first we run the base-
line workflow. Then we run the choreographed
workflow with the same system prompts, but pre-
fill the strategic thoughts by copying them from
the baseline workflow, rather than decoding new
ones. We allow the subsequent conversations and
decisions to diverge from the baseline workflow.
We use fixed random seeds to generate separate
training, development, and evaluation splits of size
400, 100, and 500, respectively. Half the games in
each split are played with Alice speaking first, with
Bob going first in the remainder.

Table 3 provides compelling evidence of infor-
mation leakage. Across all settings, Bob’s coop-
eration rate decreases. As one might expect, the
decrease is largest when Alice is instructed to “al-

by calling prefill on textual copies of Alice’s utterances.

ways defect” (72.8% → 46.7%), and smallest when
Alice is instructed to “always cooperate.”

Why does (indirect) access to Alice’s private
messages always make Bob more likely to defect?
Bob may be primed by the fact that these mes-
sages mention defecting. As an ablation, we gen-
erate games where Bob attends to encodings that
are re-encoded to only attend to Alice’s system
prompt or her private plan (Figure 8). The re-
sults do weakly suggest that Bob is sensitive to the
content of the leaked prompts. In the conditions
where only the system prompt is leaked, adding “al-
ways cooperate” to it makes Bob somewhat more
likely to cooperate, and adding “always defect”
to it makes Bob far more likely to defect. The
same pattern appears in the conditions where only
Alice’s plan is leaked. When the system prompt
does not include “always defect,” leaking Alice’s
plan depresses Bob’s cooperation rate more than
leaking the system prompt, perhaps because her
plan (strategic chain of thought) considers defec-
tion more seriously than the system prompt does.

We conduct an additional experiment where Bob
is explicitly prompted to predict Alice’s decision
after the conversation phase, to determine if Bob



Figure 5: E2E speedup across varying numbers of
branches and voters. In the ToT workflow, “branches”
are candidate solutions generated for an problem, while
“voters” denote independent agents that vote on the most
promising solutions. Interestingly, the speedup is non-
monotonic with respect to the number of branches and
peaks for B = 2 and 4. This reflects a non-linear rela-
tionship: while re-encoding a large number of branches
is expensive, it also introduces overhead to downstream
decode calls that need to attend the longer context.

actually discerns Alice’s strategy. However, Bob’s
prediction accuracy revealed no statistically signifi-
cant differences in any settings across 100 games
(Table 6). Regardless, information leakage’s im-
pact on cooperation rate is notable. Crucially, fine-
tuning effectively remedies this, leaving no statisti-
cally significant difference from the baseline.

4 Main Experiments

To evaluate Prompt Choreography across diverse
real settings, we implement three workflows repre-
senting common architectural patterns (Figure 2).
All workflows are evaluated on MATH (Hendrycks
et al., 2021), a standard dataset of challenging com-
petition mathematics problems.

1. Iterative Multi-Agent Debate (MADiter)
(Liang et al., 2024), characterized by sequen-
tial, turn-by-turn interaction between agents
over a shared conversation history.

2. Tree of Thoughts (ToT) (Yao et al., 2023),
with hierarchical exploration of multiple can-
didate solutions in parallel, followed by voting
steps to extend the most promising solutions.

3. Parallel Multi-Agent Debate (MADpar)
(Du et al., 2023), showcases a strongly-
connected communication topology, where

Workflow Implementation Acc. (Diff. CI) (%)

Direct Baseline 18.8

MADiter Baseline 39.0
Choreographed 24.8 (−21.7,−9.8)

Choreo. + FT 38.6 (−5.9,+5.1)

Distilled Baseline 1.8 (−41.8,−32.3)

ToT Baseline 39.6
Choreographed 30.2 (−15.5,−3.3)

Choreo. + FT 41.4 (−5.3,+8.9)

Distilled Baseline 29.6 (−14.7,−5.3)

MADpar Baseline 64.6
Choreographed 52.4 (−16.9,−7.4)

Choreo. + FT 60.0 (−9.0,−0.02)

Distilled Baseline 5.2 (−63.9,−54.2)

Table 4: Accuracy on MATH problems across various
workflows and implementations. We report 95% CIs on
the difference in accuracy, with respect to the baseline,
obtained via McNemar’s Exact Test.

Workflow TTFT Ratio (CI) E2E Ratio (CI)

ToT 3.5 (3.26, 3.82) 1.031 (1.026, 1.036)

MADiter 2.0 (1.94, 2.07) 1.036 (1.028, 1.045)

MADpar 6.2 (5.6, 6.8) 1.027 (1.023, 1.032)

Table 5: Performance improvements of choreographed
workflows over baseline counterparts (baseline ÷ chore-
ographed). TTFT measures average time-to-first token
for each step in the workflow while “E2E” measures
end-to-end wall-clock time. We report 95% confidence
intervals obtained via bootstrapping.

many agents generate in parallel while con-
ditioning on the outputs of other agents from
previous rounds.

4.1 Task Accuracy

We apply the fine-tuning recipe to Llama 3.1 8B
detailed in §3.12 We train LoRA adapters for up to
8 epochs and select the best performing checkpoint
by validation accuracy. Training takes 1–3 seconds
per example,13 depending on the workflow, so even
our most expensive training runs require less than
3 hours on a single A100-80GB GPU.

We also compare to a very fast direct workflow
that prompts the LLM to answer the problem in a
single step. Finally, we distill each full workflow:
we try to fine-tune the LLM so that the fast direct

12We sample training, development, and evaluation splits
of size 500, 280, and 500, respectively.

13Training on one example executes the entire workflow
and then back-propagates its loss.



workflow produces the same final solution that the
baseline method obtains using the full workflow.14

Results are presented in Table 4. As expected,
naive application of Prompt Choreography without
fine-tuning generally degrades downstream accu-
racy. However, applying our fine-tuning recipe
proves effective once again; fine-tuning even ex-
ceeds baseline accuracy in ToT and MADiter, while
recovering a significant amount of baseline perfor-
mance in MADpar. The poor distilled performance
indicates that fine-tuning by itself is not sufficient:
the (choreographed) workflow at inference time is
contributing something.

4.2 Performance

To evaluate the speedup obtained through Prompt
Choreography, we run both baseline and chore-
ographed implementations on 30 input problems
from the MATH dataset. We constrain the chore-
ographed workflow to output the same tokens as
the baseline, while simulating normal decoding.
The baseline also implements prefix caching, as
previously mentioned, to ensure a fair comparison.

Each workflow we consider shares dynamically
generated messages among agents, which would
force the naive implementation (§3.1) to re-encode
these messages each time they are used. Only some
of this re-encoding is avoided by prefix caching.

We consider two key metrics: (1) average time-
to-first-token and (2) end-to-end wall-clock time
(E2E). The former measures the delay to produce
the first token in each intermediate decode step
in the workflow, including any retrieval or re-
encoding of its parent messages.

We see substantial TTFT improvements in Table
5. MADpar sees the largest gain (6.2x TTFT), for
instance, because the baseline must redundantly
re-encode all prior agents’ messages for each agent
in the current round. In contrast, MADiter sees
smaller gains (2.0x TTFT), as only the opponent’s
last turn needs to be re-encoded. End-to-end (E2E)
speedups in these specific configurations are more
modest, around 1.03x (Table 5). This is expected,
as workflow run-time is commonly dominated by
decoding, which amortizes redundant computation.
Regardless, a 3% E2E improvement can still be
valuable and accumulate into significant long-term
savings.

Examining Appendix A.3, we see that the E2E

14Either the final message or, for MADiter and MADpar,
an answer extracted programmatically from the final message.

speedup for ToT and MADpar is positively cor-
related with the number of tokens generated in
the workflow, indicating that they are more prefill-
bound, whereas MADiter has a negative correlation.
This is reasonable, as ToT and MADpar may be-
come bottlenecked by re-encoding large contexts
for all agents in parallel at certain steps. We run
ToT across a broader range of configurations, and
indeed find that prefilling begins to dominate in
the baseline as we scale critical parameters. This
results in more dramatic E2E speedups (>2.2x, §4).

5 Related Work

Prompt Choreography extends prior work accel-
erating LLM workflows with increased flexibility.
While prefix caching (Ye et al., 2024; Zheng et al.,
2024) reuses common prefixes and Prompt Cache
allows selective reuse of static prompt components,
neither handles reusing content generated at run-
time or arbitrary context reordering. Some meth-
ods specialize caching to information retrieval (Sun
et al., 2024; Lu et al., 2024; Wang et al., 2025) by
pre-computing knowledge bases and sometimes in-
corporating repositioning. Prompt Choreography
again generalizes these approaches. In addition,
prior work on efficient LLM inference, such as KV
cache compression (Li et al., 2024) and LLM serv-
ing systems (Kwon et al., 2023; Zheng et al., 2024),
are generally complementary to Prompt Choreog-
raphy. While these optimize the low-level compo-
nents of LLM inference, we show that the high-
level structure of a workflow can also be optimized
for better cache reuse.

6 Conclusions and Future Work

In this work, we introduce Prompt Choreography,
a general framework for tackling redundant com-
putation in LLM workflows through a dynamically
managed, global KV cache. Although evaluated
here on a single model and node, future work in-
cludes verifying generalization across more diverse
models and scales, as well as deeper mechanistic
analysis into how cached encodings impact infor-
mation flow in workflows. On top of releasing our
reference implementation, we also plan to extend
these principles into production-ready serving sys-
tems, potentially integrating with existing widely-
adopted systems such as vLLM.
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Appendices
A Workflow Details

For each workflow, we follow the prompts pro-
vided by the original papers and reference imple-
mentations. Further details can be found in Liang
et al. (2024) (MADiter), Yao et al. (2023) (ToT),
and Du et al. (2023) (MADpar). Evaluation is done
at temperature 0.7. Pseudocode is provided in Fig-
ure 6.

A.1 Iterative Multi-agent Debate
Three maximum rounds of debate with moderator-
led early-stopping and level 2 (default) “debate-
level” prompt.

A.2 Tree of Thoughts
One-level breadth-first search, with 8 solution
branches followed by 4 votes. The best candidate
is then expanded into the final solution.

A.3 Parallel Multi-agent Debate
Three agents over three rounds of debate. We do
not include the intermediate summarization step
proposed by the original paper.



1 # prefill initial prompts
2 prompts = {...}
3
4 context = []
5 for _ in range(ROUNDS):
6 # for each participant
7 for role, header in [
8 ('aff', 'Affirmative:'),
9 ('neg', 'Negative:'),

10 ('mod', 'Moderator:')
11 ]:
12 # decode new message
13 msg = decode(
14 header=header,
15 parents=[
16 prompts[role],
17 *context
18 ]
19 )
20
21 if role != 'mod':
22 context.append(msg)
23
24 # early stop?
25 elif parse_stop(msg):
26 break

1 # prefill initial prompts
2 prompts = {...}
3
4 # generate candidate cots
5 cots = decode([{
6 'header': 'Assistant:',
7 'parents': [prompts['problem']]
8 } for _ in range(CANDIDATES)])
9

10 # vote on best cot
11 votes = decode([{
12 'header': 'Assistant:',
13 'parents': [
14 prompts['vote'],
15 *cots
16 ]
17 } for _ in range(VOTERS)])
18
19 # final answer from best cot
20 final = decode(
21 header='Assistant:',
22 parents=[
23 prompts['gen_answer'],
24 cots[parse_best(votes)]
25 ]
26 )

1 # prefill initial prompts
2 prompts = {...}
3
4 prev = []
5 for _ in range(ROUNDS):
6 tasks = []
7 for i in range(AGENTS):
8 # previous round answers
9 others = [

10 p for j, p in
11 enumerate(prev)
12 if i != j
13 ]
14
15 # create new task
16 tasks.append({
17 'header': f'Agent {i}',
18 'parents': [
19 prompt['question'],
20 prompt['answer']
21 ] + others
22 })
23
24 # decode all new answers
25 prev = decode(update_tasks)

Figure 6: Pseudocode with accompanying figure for each workflow we analyze in §4.

Figure 7: E2E speedup against total tokens generated for each workflow (n = 30).



Figure 8: Shift in cooperation rates between choreographed and baseline implementations of the Prisoner’s Dilemma.
“Leak Both” is the normal choreographed implementation, whereas “Leak System” and “Leak Plan” are ablations
that explicitly re-encode Alice’s output encodings to strictly attend to her private system prompt or planning phase.
Error bars represent 95% CIs on the difference relative to the baseline.

Baseline

Strategy Alice Actual Bob Predicted Outcome
Cooperate Cooperate Correct Exploits Defends

No Explicit Strategy 82% 84% 80% 13% 6%
Always Cooperate 100% 96% 98% 14% 3%
Always Defect 0% 70% 30% 17% 13%

Choreographed

Strategy Alice Actual Bob Predicted Outcome
Cooperate Cooperate Correct Exploits Defends

No Explicit Strategy 76% 76% 79% 18% 5%
Always Cooperate 99% 88% 89% 15% 4%
Always Defect 2% 55% 45% 27% 32%

Choreographed + Fine-tuned

Strategy Alice Actual Bob Predicted Outcome
Cooperate Cooperate Correct Exploits Defends

No Explicit Strategy 79% 87% 80% 19% 8%
Always Cooperate 98% 84% 92% 20% 4%
Always Defect 1% 60% 41% 14% 23%

Table 6: Results from playing 100 games and prompting Bob to explicitly predict Alice’s decision. We say that Bob
exploits Alice when he predicts that she will cooperate, so he chooses to defect. In contrast, Bob defends when he
predicts that Alice will defect, so he chooses to defect.


